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Abstract

Modeling the probability of use of land units characterized by discrete and continuous measures, we present a Bayesian random-effects model

to assess resource selection. This model provides simultaneous estimation of both individual- and population-level selection. Deviance

information criterion (DIC), a Bayesian alternative to AIC that is sample-size specific, is used for model selection. Aerial radiolocation data from

76 adult female caribou (Rangifer tarandus) and calf pairs during 1 year on an Arctic coastal plain calving ground were used to illustrate models

and assess population-level selection of landscape attributes, as well as individual heterogeneity of selection. Landscape attributes included

elevation, NDVI (a measure of forage greenness), and land cover-type classification. Results from the first of a 2-stage model-selection

procedure indicated that there is substantial heterogeneity among cow–calf pairs with respect to selection of the landscape attributes. In the

second stage, selection of models with heterogeneity included indicated that at the population-level, NDVI and land cover class were significant

attributes for selection of different landscapes by pairs on the calving ground. Population-level selection coefficients indicate that the pairs

generally select landscapes with higher levels of NDVI, but the relationship is quadratic. The highest rate of selection occurs at values of NDVI

less than the maximum observed. Results for land cover-class selections coefficients indicate that wet sedge, moist sedge, herbaceous tussock

tundra, and shrub tussock tundra are selected at approximately the same rate, while alpine and sparsely vegetated landscapes are selected at a

lower rate. Furthermore, the variability in selection by individual caribou for moist sedge and sparsely vegetated landscapes is large relative to

the variability in selection of other land cover types. The example analysis illustrates that, while sometimes computationally intense, a Bayesian

hierarchical discrete-choice model for resource selection can provide managers with 2 components of population-level inference: average

population selection and variability of selection. Both components are necessary to make sound management decisions based on animal

selection. (JOURNAL OF WILDLIFE MANAGEMENT 70(2):404–412; 2006)
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A common resource-selection study design uses locations of

uniquely identified individual animals recorded over time (e.g., via

radio or Global Positioning System [GPS] collars) to describe

habitat use. Attributes (e.g., land-cover types, elevation) of used

locations are compared to those collected at available locations to

assess selection. Animal locations are assumed to be far enough

apart in time to be considered independent, and availability is

treated as known and equal for all animals. Thomas and Taylor

(1990) categorize this type of study design as a Design 2 study.

Design 2 studies provide data for assessing resource selection for

individual animals and at the population level by examining

selection across animals. For example, individual selection of

categorical habitat types may be assessed using a chi-square

statistic (Neu et al. 1974) and population-level selection assessed

using the sum of individual chi-squares (White and Garrott 1990)

or a maximum chi-square statistic (Dasgupta and Alldredge 1998,

2000, 2002). However, these methods do not assess whether

individual animals are selective in the same way. Thus, if use is

random at the population level with half the animals using a

resource less than its availability and half using the resource more

than its availability to the same degree, these methods will lead

researchers to infer population-level selection when none exists.

Evidence of individual selection across a group of individuals is

not evidence for population-level selection unless the direction of
individual selection is relatively consistent.

For continuous variables describing resource units, some
researchers average individual parameter estimates across animals
to estimate population-level selection parameters. Glenn et al.
(2004) fit a logistic-regression model to each animal and reported
mean estimated parameter coefficients across animals to describe
population-level selection. This approach assesses population-level
selection because opposite choices by animals would result in an
inference of no population-level selection. However, if the

numbers of relocations differ among animals, this approach
averages estimates without accounting for their differing standard
errors and thus yields an incorrect error estimate for assessing
population-level selection. As a result, animals with few
observations and less precise parameter estimates disproportion-
ately impact the mean value. Miller et al. (2000) avoided this
problem in their use of a single logistic regression across animals
by using a random sample of 10 locations/animal to ‘‘. . .prevent
individuals monitored disproportionately from overly influencing
estimated parameters.’’ However, as a result, they did not use all of

their relocation data to assess selection.

Random-effect models provide a mechanism to appropriately
weight relocations and individuals that provide inferences for
population-level selection using valid error terms. Several areas of

ecology have employed random effects (also called hierarchical)
models to describe natural processes. These include capture–
recapture modeling (e.g., Johnson and Hoeting 2003, Burnham
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and White 2002, Brooks et al. 2000), modeling spatial
distributions of species (Penttinen et al. 2003) and predicting
invasive species population growth (Wikle 2003). The recent
development of computational techniques such as Markov Chain
Monte Carlo (MCMC; see Gelman et al. 2004) provides a
relatively straightforward method to incorporate random effects
into generalized linear models. Bernardo and Smith (1994)
provide a theoretical treatment of the subject.

Bayesian methods are increasingly used for decision making in
natural resource issues (Boyce 2002, Link et al 2002). Thomas et
al. (2004) presented a Bayesian model for categorical resource
selection with known availability and illustrated analyses for each
animal and across all animals. They identified several advantages
of these methods including credible intervals (a Bayesian
alternative to confidence intervals) and model-selection methods
that are sample-size specific and do not rely on large sample
theory. Also, credible intervals do not yield negative lower bounds
and zero use of a given resource results in a meaningful interval for
selection that is sample-size dependent. Their model is also
relatively insensitive to the inclusion and exclusion of habitats.
That is, selection inferences tend to not change if a habitat is
dropped or added in the analysis.

Discrete-choice models, commonly employed in consumer
selection studies in business and economics (Manski and
McFadden 1981), have been used to assess resource selection by
animals (Cooper and Millspaugh 1999; McCracken et al. 1998;
Manly et al. 2002: chapter 8). Ramsey and Usner (2003) used a
discrete-choice model with random effects to model individual
heterogeneity in categorical habitat selection of bears. This model
assumes that variability in selection among animals is constant
across habitat types. In addition, Ramsey and Usner (2000) used a
discrete-choice model with a persistence parameter to model the
tendency of bears to stay in the same habitat type between
successive relocations. They were not successful in fitting a single
random-effects model with a persistence parameter. Dailey et al.
(2007) examined habitat selection by trout with a Bayesian
discrete-choice model with a seasonal persistence parameter.

We formulate a general Bayesian random-effects discrete-choice
model for Design 2 (Thomas and Taylor 1990) resource-selection
data for independent relocations of a collection of animals. We
illustrate this model using caribou calving ground selection data
using a mix of continuous and categorical variables characterizing
plots of land.

Study Area and Methods

In this section, we describe an example data set, present the details
of a Bayesian random-effects model, discuss inferences, and
describe model-fitting and assessment details. The example data
set is a subset of a long-term study comprised of 19 years of
caribou locations (Griffith et al. 2002). Thus, the analysis
presented here is for the purpose of illustrating estimation and
assessment of sources of variation using random-effects models
rather than serving as a treatise on caribou calving ground
selection.

Caribou Calving Ground Data
Aerial relocations were obtained from 76 VHF radiocollared
female caribou calves on the north slope of Alaska, USA, in June

1994. Calves were hand-captured within 2 days of birth during 1–
3 June. Calves with cows were relocated daily, weather permitting,
through 24 June. Locations were recorded with GPS; comparison
to a local differentially corrected base station suggested that 95%
of recorded locations were within 200 m of actual locations. The
number of relocations per animal ranged from 3 to 22 with 75%
of animals having at least 16 relocations (median¼ 18.00, mean¼
16.70), resulting in 1,269 relocations. We generated daily,
population level, 99% utilization distributions (UD, the area
expected to include 99% of locations of all animals in the target
population, all else held equal) with least-squares-cross-validated
fixed kernels (Seaman and Powell 1996; Seaman et al. 1998,
1999), overlaid all these daily contours, and obtained the outer
perimeter of all daily 99% UDs. An 8-km2 habitat grid was
generated, and the 131 cells within or intersecting the outer
perimeter of daily 99% UDs was used as our available area for all
individuals. No analyzed relocations occurred outside this
available area. Thus, we estimated within-calving-ground habitat
selection.

Three habitat attributes of each grid cell were considered: 1)
continuous-elevation data obtained from 60-m2 resolution Digital
Elevation Models, 2) 6 categorical land-cover classes derived from
a supervised classification of 30-m2 resolution Thematic Mapper
and 50-m2 resolution Multi- Spectral Scanner images (Jorgensen
et al. 1994, 2002; Griffith et al. 2002), and 3) continuous relative
green plant biomass estimated with 1-km2 resolution Normalized
Difference Vegetation Index (NDVI; Tucker 1979, 1986) for 21
June (Griffith et al. 2002) derived from Advanced Very High
Resolution Radiometer (AVHRR) data from National Oceanic
and Atmospheric Administration (NOAA) polar-orbiting satel-
lites. The three original habitat layers were resampled with
ARCINFO to 8-km2 resolutions using the zonal median for
elevation and NDVI and the zonal majority for land-cover class.
Land-cover classes were: 1) Wet Sedge, 2) Moist Sedge, 3)
Herbaceous Tussock Tundra, 4) Shrub Tussock Tundra, 5)
Alpine, and 6) Sparsely Vegetated. Attributes for grid cells that
were only partly in the UD were determined for the entire cell or
only for the portion that was not ocean. Our models use
standardized Elevation (EZ) and NDVI (NZ) and 5 indicator
variables for land-cover class (LC). Because previous work
(Griffith et al. 2002) suggested that caribou selected areas within
calving grounds based on NDVI and they typically calved between
the coast (sea level) and the foothills in this area, we included
linear (EZ, NZ) and quadratic terms (EZ2, NZ2) for stan-
dardized elevation and NDVI to determine optimal levels of these
attributes. We did not include snow-cover as a habitat attribute
because the calving ground was snow-free at calving in 1994.
Neither did we include the rate of change in NDVI as a habitat
attribute because previous analyses (Griffith et al. 2002) showed
that caribou did not select this attribute within annual calving
grounds.

Bayesian Random-Effect Model Data Analysis
Bayesian random-effect (or hierarchical) models are typically
composed of 3 parts: a data (likelihood) model, a parameter
model, and a hyperparameter model. The data model commonly
represents the likelihood used in traditional maximum-likelihood
analysis. Similar to Manly et al. (2002), Barmi and Pontius (2000),
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and Aebischer et al. (1993), we model the probabilities of use of
grid cell s by animal i as

piðsÞ ¼
exðsÞbi aiðsÞX

r2S
exðrÞbi aiðsÞ

; ð1Þ

where s 2 1; 2; 3; . . . ; 131f g is a grid cell, x(s) is a k-dimensional
vector of attributes characterizing grid cell s; e.g., NZ, EZ, and
LC2, LC3, LC4, LC5, LC6 (5 indicators with wet sedge as the
reference type), ai(s) is the relative availability of grid cell s to
animal i, and bi¼ (bi1, bi2, . . . , bik)’ is a k-dimensional vector of
parameters for animal i. We considered all grid cells to be equally
available to all caribou so ai(s)¼ 1/131 and the model reduced to
the discrete-choice model (McCracken et al 1998),

piðsÞ ¼
exðsÞbiX

r2S
exðrÞbi

: ð2Þ

The parameter vector, bi, of this model will be different for each
animal so the probability of use of each grid cell may differ for
each animal. No intercept term was included in the parameter
vector bi because it would have canceled with the same term in the
denominator of pi(s) and inclusion of such a term might have led
to convergence problems in Bayesian estimation.

For the jth independent relocation of animal i, the probability
that location occurs in grid cell sij is pi(sij). Thus, for m animals
acting independently and ni independent relocations of animal i,
the likelihood for all recorded relocations is

P
m

i¼1
P
ni

j¼1
piðsijÞ: ð3Þ

This likelihood could alternatively be written as the product of m
multinomial probabilities (see Ramsey and Usner 2003) if the
number of relocations in each grid cell by each animal is summarized.

In models allowing individual effects, it is usually not the
parameters in the individual models that are of interest. Rather, it
is the parameters of a population-level model that generates these
individual parameters that is the inferential target. The collection
of estimated parameters across individuals is used to illustrate
variation in selection and investigate differences among various
subcollections of animals (e.g., gender, age class). In the parameter
model, a selection model for each caribou represents a sample
from a population of such models. Therefore, a probability model
for the individual parameters (or random effects) is added to
represent the random selection of caribou from a larger
population. Here, the parameter models were taken to be bil ;

N(bl*, rl
2), for l¼ 1, 2, . . . , k. That is, we use independent normal

distributions with common coefficient bl* and variance rl
2 to

model individual selection parameters for all animals. bl* and rl
2

are commonly referred to as hyperparameters in the random-
effects model. Estimation of the bl* provides inference concerning
population-level selection based on resource attributes, and
estimation of rl

2 allows description of the variability in selection
across animals for each resource attribute.

The full likelihood of the random-effects model used, for
example, to perform maximum-likelihood estimation for the
hyperparameters and make population-level selection inferences
requires integration of the data model times the parameter model

over the random effects. This integration typically leads to an
intractable expression unless a conjugate parameter model is used
(see Ramsey and Usner 2003). Our model differs from that of
Ramsey and Usner (2000) in 2 key ways. First, we model the
probability of use of a piece of land, s, characterized by attributes
x(s), by individual animals, not the probability of use of categorical
habitat types by individual animals. Thus, while Ramsey and
Usner modeled probability of use of 5 habitat types, we model the
probability of use of 131 grid cells. Second, our model allows
variability in selection among animals associated with an attribute
to differ by attribute. For example, there may be more variability
among animals in the selection of elevation than in greenness. The
heterogeneity model of Ramsey and Usner assumed the variability
in selection among animals associated with habitat types to be the
same for all habitat types. Because of the greater generality of our
model, a conjugate parameter model, like the Dirchelet parameter
model used by Ramsey and Usner, was not used. Aitchison (1986)
suggested that the Dirchelet parameter model unnecessarily limits
the richness of the model, so Bayesian estimation was employed.

Bayesian methodology requires a prior distribution for all
parameters in the model. Thus, the third part of the model is a
prior distribution for the hyperparameters (sometimes called
hyperpriors). Independent normal distributions with mean 0 and
variance 100 were used here for the prior for each of the k bl*
parameters and independent inverse-gamma distributions with
parameters 0.01 and 0.01 (parameterized such that the mean is 1)
for each of the k rl

2. Our choices of priors result in vague prior
information because large variances equal to 100 reflected the limited
knowledge we possessed concerning the value of these parameters.

WinBUGS software, commonly used for Bayesian analysis of
statistical models (Link et al. 2002), was used to fit our models (see
http://www.mrc-bsu.cam.ac.uk/bugs/; Spiegelhalter et al. 1999, Gilks
et al. 1994). Our programming approach was based on hierarchical
centering, which improves the efficiency of estimation (Chen et al.
2000). An illustration of the data format and the WinBUGS
program are provided in Appendices A and B, respectively.

Fitted models yield precisely estimated posterior distributions
and Bayes estimates (means of these posterior distributions) for the
population-level selection parameters, bl*, individual selection
parameters, bil, and the variability in selection among animals for
each covariate, rl

2. The Bayesian Output Analysis (BOA) package
in R (R Development Core Team 2004) was used to obtain 95%
highest probability density (HPD)-credible intervals (Chen et al.
2000:219) for bl*. WinBUGS was also used for model selection by
determining the values of the deviance information criterion (DIC;
defined in Appendix C), a Bayesian alternative to Akaike
Information Criterion (AIC; see Burnham and Anderson 2002
or Spiegelhalter et al. 2002). Models with DIC values differing by
�5 were considered substantially different in their fit to the data.

Bayesian model-fitting details in wildlife research are discussed
thoroughly by Link et al. (2002), including the total number of
iterations and chains to use; the number of burn-in iterations
needed; and the purpose of thinning and convergence criteria (see
also Gelman et al. 2004). We used 30,000 iterations in a single chain
with the first 10,000 iterations used as a burn-in for parameter
convergence. Thus, posterior distributions, parameter estimates,
and DIC values are based on 20,000 iterations. The history plot of
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model deviance across burn-in iterations confirmed convergence,
and the Geweke (1992) convergence diagnostic confirmed that our
chain length was adequate. The autocorrelation function in
WinBUGS showed that dependence between posterior samples
decreased at an adequate rate, therefore, we did not thin our samples.

In addition, for the model selected by DIC, we also performed 2
subsequent diagnostic analyses. First, the data was reanalyzed
using uniform (0, 500) prior distributions for rl, l¼ 1, . . . , k. This
change of priors was performed to examine how robust the results
were to selection of the variance components prior. Second, for
the final DIC selected model, the relocation data was also thinned
to observations recorded every 3 days to assess whether there is any
animal persistence (the tendency of an animal to stay in a
particular location unrelated to selection of resources at that
location). This resulted in 500 animal relocations.

Model Selection
To illustrate possible inferences using random effects, model
comparisons were conducted at 2 levels. First, we assessed whether
population-level selection effects and/or individual selection
effects or neither (random use) contributed to explaining the
variation in our data. The following 4 global models were fit:

1. A model with population-level effects and individual random
effects with covariates (x[s]) NZ, NZ2, EZ, EZ2, and the 5
land-cover indicators (LC2–LC6). This model is appropriate if
individual selection occurs and common population-level
selection occurs across animals. This is the model described
in the previous section.

2. A model similar to model 1 above but with no common
population effects. This model was fit by setting all the
population-level effects bl*¼ 0 for l¼ 1,2 . . . k. This model is
appropriate when individual selection occurs but there is no
common population-level selection across animals (i.e., the bil

vary about zero).
3. A model similar to model 1 above but with no individual

random effects. This model is appropriate when population-
level selection occurs but animals do not vary in their selection
of resource attributes. This model was fit by setting bil¼ bl* for
all animals (i) and rl

2 ¼ 0 for l ¼ 1, 2 . . . k.
4. A no-selection model was fit by setting all population level

effects bl*¼ 0 and all individual effects bil¼ 0 for l¼ 1, 2 . . . k.
Thus, the probability of use of every 8-km2 grid cell is the same
as its availability. For this model, there are no parameters to
estimate, and the DIC calculation reduces to�2ln (likelihood)
with the likelihood defined in equation (3) with pi(s)¼ 1/131.

Second, we examined the contribution of covariate variables in
the model. Because NZ on 21 June is strongly correlated with calf
survival (Griffith et al. 2002), we included NZ and NZ2 in all
candidate models. Thus, we investigated whether elevation (EZ,
EZ2) and/or land-cover type (LC2 . . . LC6) contributed to
predicting the probability of use given that NZ and NZ2 were
already in the model.

Results

The radiocollared calves used an area of ,10,000 km2 that
encompassed foothill to coastal elevations (Fig. 1). Calves used all
LC classes and the entire range of NDVI values.

The best-fitting global model (smallest DIC value) is model 1,
which includes individual- and population-level selection (Table 1).
The delta DIC for global models 1 and 4 (1,988.0) provides
evidence of nonrandom use at the population- or individual level or
both. Delta DIC for global models 1 and 2 (25.2) indicates that
population-level selection is evident when allowing for individual
differences in selection. Delta DIC for global models 1 and 3
(1,226.7) indicates evidence of individual animal variation in
selection beyond population-level selection. Therefore, we conclude
that selection occurred at both the population and individual levels.

Next, we examined the contribution of elevation (EZ, EZ2) and
land-cover class (5 indicators in LC) to global model 1. The
model with the smallest DIC value for the caribou calving ground
data includes NZ, NZ2, and land-cover classes as indicators
(Table 2). Because all delta DIC values .5, we select the model
that includes both population and individual (random) effects for
NZ, NZ2, and LC2–LC6 for further description.

Table 3 gives fitted values, bl*, their estimated standard errors
and 95% highest probability density lower and upper bounds in
columns 2, 3, 4, and 5, respectively. The midpoints of the bounds
are not the bl* values because the posterior distributions are not
symmetric (see Chen et al. 2000). Covariates with bounds not
including zero are interpreted to contribute significantly to
population-level selection. The average values of the b̂il across
animals and standard errors calculated byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xm
i¼1
ðb̂il � b̂

il

Þ2

mðm� 1Þ

vuuuut
;

where m is the number of animals, are given in columns 6 and 7,
respectively, for comparison.

Population-selection parameter estimates (b̂l*; column 2, Table
3) are similar to the average of the individual-selection parameter
estimates (average b̂il ; column 6, Table 3) because the individual-
selection parameters bil are constrained to have means bl* in the
random-effects model. If a separate model for each animal had
been fit without the random-effects constraint, the averages likely
would have differed more from the estimated population-level
effect. The standard errors of the average individual-selection

Figure 1. Distribution of relocations of radiocollared calves of the Porcupine
caribou herd on the North Slope of the Brooks Range and Arctic coastal plain
in Alas., USA, 1–24 June 1994. Grid size is 8 km2. Solid line is the outer
perimeter of all daily population-level 99% utilization distributions.
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parameter estimates (column 7) are misleadingly small (10–60%
as large as the population-selection parameter standard errors
[column 2]) because this approach does not incorporate differing
numbers of relocations among animals. As a result, researchers
using the average of individuals based standard errors (column 7)
are likely to conclude population-level selection for some variables
that are not warranted.

Individual caribou selection parameter estimates, b̂il, are centered
near zero for covariates EZ, EZ2, LC2, LC3, and LC4 (Fig. 2).
Thus, the DIC results indicating EZ and EZ2 do not contribute to
predicting probability of use are confirmed by the box plots of
individual-selection parameter estimates. Because wet sedge was
used as the land-cover reference type, interpretations of the
parameter estimates for LC2–LC6 are relative to that land-cover
type. Thus, we infer that moist sedge (LC2), herbaceous tussock
tundra (LC3), and shrub tussock tundra (LC4) are selected about
the same as wet sedge, while alpine (LC5) and sparsely vegetated
(LC6) are selected less than wet sedge. Furthermore, the variability
in selection for moist sedge plots (LC2) and sparsely vegetated
(LC6) is large relative to the variability in selection of other land-
cover types. The differences in variability are also reflected in the
estimated variances, r̂2

l , which were 3.237, 2.108, 6.540, 4.958,
3.783, 0.509, 2.171, 1.676, and 72.82, respectively, for the variables
as arranged left to right in Fig. 2. The 5 outliers in LC6 were the
only 5 animals that used sparsely vegetated plots even though this
cover type made up 18 of the 131 available cells and these animals
caused the large variance for LC6. The 2 animals with low outliers
for the NZ parameter estimates moved less than others and used
cells with lower-than-average values of NZ.

The model can be used to depict the probability of use of the 131
cells (Fig. 3). In our example, random use would predict a
probability of use of 0.008 (1/131), but the model predicts that use
of cells varies from less than one-quarter to 3 times as great as
expected on the basis of random use.

The results of the 2 diagnostic analyses, use of uniform variance
component priors to assess sensitivity to choice of prior and
thinning the data to relocations every 3 days to assess the impact
of relocation persistence, did not change the inferences concerning
the significance of the cell attributes in the model. That is, the bl*
significant in the original analysis were significant in each of the 2
diagnostic analyses. Using the uniform prior for the random-effect
variances, the bl* were 3.426, �3.075, �0.759, �2.06, �0.567,
�1.983, and�13.330, and the estimated variances, r̂2

l , were 3.497,
2.314, 7.018, 5.316, 3.927, 0.567, 2.355, 2.505, and 96.19. Thus,
the choice of prior for the random-effects components made little
difference in estimated parameters and had no impact on

inferences. Using the thinned data, the bl* were 1.901, �1.970,
�0.572, 0.227, �0.287, �1.404, and �1.932, and the estimated
variances, r̂2

l , were 0.028, 0.006, 1.800, 1.236, 1.377, 0.041,
1.509, 0.154, and 0.764. The bl* values were closer to zero because

less data was available to offset the prior, and the coefficient LC3
changed sign but still was not significantly different from zero, so
inferences concerning selection remain unchanged. In addition,
the variance component estimates, r̂2

l , for the thinned data were
much smaller than those for the full data set because thinning
removed many of the outliers in the data. Overall, the alternate
priors and thinned data analyses did not indicate a problem with
prior sensitivity or animal persistence that would influence
inferences made for the original analysis.

Discussion

Random-effect models allow individual heterogeneity through the
data model and population inference through the hyperparam-
eters. Information in the data is shared between the data model
and the parameter model. For example, for those individuals with
few observations, parameters would be poorly estimated in an
individual model only using data for that animal. In the random-
effects model, estimates of individual effects contribute to
population-level estimates, which in turn contribute to individ-
ual-effect estimates through the parameter model. This feedback
loop allows individuals with different numbers of relocations to
share information with the data model in a way that treats each
individual equally but numbers of relocations differently. Thus,
this information sharing provides a weighting scheme for different
numbers of relocations per animal in the data to influence
population-level parameter estimates.

Bayesian credible intervals have a more natural interpretation
than classical confidence intervals. For example, the inference from
the 95% credible interval for the coefficient for NZ is that the true
value of this parameter lies within (2.544, 4.207), with probability
0.95. Within classical or frequentist statistics, such a statement is
invalid because the parameters are assumed to be fixed.

Several realistic extensions of the model presented are possible.
First, a persistence parameter, as proposed in Ramsey and Usner
(2003), may be included in our model if animals have a tendency to
linger in the same grid cell for more than 1 relocation period.
Second, additional covariance structure, rather than independence,
may be added to the model if animals do not behave independently
but move in groups. Finally, different choice sets of available grid
cells (see Cooper and Millspaugh 1999) for each individual animal
may be used rather than assuming that all grid cells were equally
available to all animals by adjusting ai(s) in equation (1).

Although the power of a test is not a Bayesian issue, users are

Table 1. Global model-selection results.

Model DIC Delta DIC Rank

(1) Population and individual random effects
including all covariates 10385.3 0.0 1

(2) Individual effects, no population effects 10410.5 25.2 2
(3) Population effects only (all covariates)

no random effects 11612.0 1226.7 3
(4) No population effects, no random effects,

the no selection model 12373.3 1988.0 4

Table 2. Model-selection results for covariates in population effects.

Model DIC Delta DIC Rank

Population effects (random effects included)
NZ, NZ2, LC2-LC6 10378.0 0.0 1
NZ, NZ2,EZ,EZ2, LC2-LC6 10385.3 7.3 2
No population effects of covariates 10410.5 32.8 3
NZ,NZ2 10418.9 40.9 4
EZ,EZ2, NZ,NZ2 10434.7 56.7 5
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likely to ask what sample sizes are needed to estimate population-

level effects and individual effects using the random-effects model

described. The model presented is sample-size specific and does

not depend on large sample approximations. However, the ability

to estimate population-level effects will be determined by the

number of animals in the data and, similarly, the number of

relocations per animal determines the quality of the estimation of

individual effects. For example, the 1 caribou in our data set with

only 3 relocations has individual-effect values very close to the

population-level effects because 3 observations do not provide

sufficient information to model the effects for this individual well.

Thus, in model-selection comparisons, the quality of parameter

estimates and their standard errors depend on the number of

animals and the number of relocations per animal. While the

model fit well for the caribou data analyzed and differences in

models were detected with the 76 animals and 1,269 relocations

described with �21 relocations per caribou, we concur with

Alldredge and Ratti’s (1986) recommendation to have �20
animals with �50 independent relocations per animal.

We emphasize that the inclusion of all biologically relevant
independent variables in discrete-choice models is desirable. For
simplicity, we considered only 3 habitat variables in our model.
Apparent differences between the distribution of observations and
modeled mean probability of use may or may not be explained on
the basis of modeled variables. For example, the cloud of relocations
in the northeast quadrat of our analysis space is not well represented
in the predicted mean probability of use. Low predicted use of the
northeast quadrat was caused by very low values for NZ, and only
11 of the 76 animals used the area. Conversely, predicted high
probability of use in the southeast quadrat and western end of our
analysis space is not congruent with the density of observations in
these areas. In this latter case, we may have failed to include relevant
variables, or our resampling of habitat to a relatively coarse 8-km2

resolution may have reduced model performance.

Management Implications

The objective of most resource-selection studies is to better
understand selection at the population level to address manage-
ment concerns. Population-level inference usually includes such
quantities as some measure of ‘‘average’’ selection and a measure
of variability in selection among animals. Both pieces of

Table 3. Population-selection parameter estimates and standard errors.

Covariate
Population selection
parameter estimate

Standard
error

95% HPD interval
lower bound

95% HPD interval
upper bound

Average value of
individual selection

parameter estimates

Standard error of
average individual selection

parameter estimates

NZ 3.376 0.427 2.544 4.207 3.384 0.238
NZ2 �3.023 0.368 �3.752 �2.318 �3.027 0.209
LC2 �0.747 0.305 �1.336 �0.162 �0.749 0.182
LC3 �0.202 0.225 �0.628 0.237 �0.202 0.042
LC4 �0.557 0.300 �1.130 0.039 �0.557 0.124
LC5 �1.820 0.490 �2.857 �0.950 �1.822 0.060
LC6 �11.772 4.081 �19.980 �4.714 �11.905 0.413

Figure 2. Boxplots of individual parameter estimates for each covariate. Boxes
indicate first and third quartiles with median shown as a line in the box. Dashed
lines extend to 61.5 times the interquartile range from the quartiles. Outliers
are shown as individual points.

Figure 3. Predicted mean probability of population use of 8-km2 cell (p(s)
using b�l ) by female calves of the Porcupine caribou herd, 1–24 June 1994,
North Slope of the Brooks Range and Arctic coastal plain, Alas., USA. The
horizontal line in the legend indicates random-use probability. Darker cells have
higher estimated probability of use.
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information are necessary for determining what management
applications may be necessary for a particular objective. Examining
the average selection of a particular resource provides only half the
information a manager needs.

There was substantial heterogeneity in habitat conditions (e.g.
snow cover, timing of vegetation green-up) and calving ground
location for the Porcupine caribou herd during 1983–2001
(Griffith et al. 2002). Our example analysis of a single year from
this long-term series captures neither the climate-induced trend in
habitat nor the multiscale heterogeneity in habitat selection that
was present (Griffith et al. 2002). Thus, our results reported here
should not be used to formulate explicit management recommen-
dations on the Porcupine caribou herd. We can, however, examine
the information that managers can gain from this analysis.

Examination of Fig. 2 illustrates that on average, Porcupine
caribou tend to select the wet sedge landscapes, but there is a large
amount of variability among animals; many animals actually prefer
the other land-cover classes more than wet sedge. Hypothetically,
if managers wanted to identify quality habitat from this example,
based on the population-level selection coefficients (Table 3), they
might decide that wet-sedge habitat is high quality. But,
examination of the variability shows that a substantial section of
the population may not select wet sedge habitat over the other
classes. Or, managers may want to examine the moist sedge
category and note that ‘‘on average’’ it is selected at a lower rate
than wet sedge, but there are a substantial number of animals that
do, in fact, select moist sedge with higher frequency.

Due to an ever increasing level of technology, managers are
employing studies using telemetry of individual animals to make
population-level management decisions. The Bayesian analysis
illustrated herein is specifically designed to provide managers with

the 2 components of population-level selection inference, average
selection and measures of selection variability among animals.
Using these telemetry data to fit a single model for all individuals;
i.e., using relocations as the sampling unit, may lead to false
inference due to inherent individual heterogeneity. Models for
individual animals, on the other hand, do not provide population-
level inference, and averaging individual model coefficients across
animals may underestimate error when different numbers of
relocations were made on animals. Hierarchical models provide a
compromise and possess the benefits of both.

Bayesian methods were used here to illustrate a hierarchical
model for assessing population-level selection. These methods
allow more complex models for resource selection than have been
used in the past. Many researchers, however, are not likely to be
familiar with Bayesian methods and MCMC computation in
particular, although they are rapidly becoming staples of ecological
research. Therefore, the use of these methods will require
researchers to study Bayesian methods and become familiar with
related software. However, those using the more complex models
that may be fit with Bayesian methods are likely to be rewarded
with a greater understanding of the factors influencing habitat
selection and thus, be better equipped to make management
decisions that will produce desired results.
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Appendix A. Format of the WinBUGS Data
Input File.

list(
N ¼ 1269, #number of animal relocations
Na ¼ 76, #number of animals
Ns ¼ 131, #number of grid cells
K¼ 9, #number of covariates

z¼structure(.Data¼c(#EZ,EZ2,NZ,NZ2,LC2,LC3,LC4,
LC5,LC6 for each grid cell

-0.948043, 0.898785, �0.775481, 0.60137, 0, 0, 0, 0, 1,
-0.936456, 0.876949, �1.09195, 1.19236, 1, 0, 0, 0, 0,
-0.94418, 0.891477, �0.986463, 0.973109, 1, 0, 0, 0, 0,

..

.

3.77575, 14.2563, �0.669989, 0.448886, 0, 0, 0, 0, 1,
2.86035, 8.18157, 0.0684484, 0.00468519, 0, 0, 0, 0, 1),

.Dim¼c(131,9)),

x¼structure(.Data¼c(#animal number, grid cell location for all
animal locations

1, 38,
1, 55,
1, 69,
2, 12,
2, 27,
2, 2,
..
.

76, 71,
76, 36,
76, 71), .Dim¼c(1269,2))

)

Appendix B. WinBUGS Program.

#Discrete Choice random effects (one covariate)
model
f
# i is the index for animal, i ¼ 1 , 2, ... , Na
# s is the index for the location cell, s ¼ 1, 2, ... , Ns
# j is an index across all animal relocations, j ¼ 1, 2, ... , N
# x is a matrix of all animal locations
# with column 1 ¼ animal number, column 2 ¼ cell number
# z is a matrix of all cells
# with column 1 ¼ cell number, remaining columns are covariate
# values for each cell
# K is the number of covariates
# if only discrete resources, K¼ number of resources
# (h-1 indicators þ ln avail)
# Normalize continuous covariates
# (not ln avail in discrete resources)

# Likelihood specification
for(j in 1:N)f

x[j,2];dcat(p[x[j,1],1:Ns])
g

# Link specification
for(i in 1:Na)f

for(s in 1:Ns)f
eprod[i,s],-exp(inprod(z[s,],abeta[i,])þlnavail[s])
p[i,s],-eprod[i,s]/sumeprod[i]

g
sumeprod[i],-sum(eprod[i,])
g

Thomas et al. � Bayesian Random Effects Resource Selection Model 411



# Prior specification

for(i in 1:Na)f
for(k in 1:K)f abeta[i,k];dnorm(beta[k],tau2[k]) g

g
for (k in 1:K)f

beta[k];dnorm(0.0, 0.01)

tau2[k] ; dgamma(0.01, 0.01)

sig2[k] ,- 1/tau2[k]

g

g# End model loop

Appendix C. Definition of Deviance Information
Criteria (DIC).

DIC ¼ Dbarþ pD ¼ Dhatþ 2�pD;

where Dbar is the posterior average of �2*ln(likelihood) across
MCMC steps, Dhat is the value of �2*ln(likelihood) using
posterior average of parameters across MCMC steps and pD,
called the ‘‘effective number of parameters’’ is pD¼Dbar - Dhat.
If there are no parameters in the model, then Dbar¼Dhat so pD
¼ 0.
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